
Subdivision Drawings of Hypergraphs�

Michael Kaufmann1, Marc van Kreveld2, and Bettina Speckmann3

1 Institut für Informatik, Universität Tübingen
mk@informatik.uni-tuebingen.de

2 Department of Computer Science, Utrecht University
marc@cs.uu.nl

3 Department of Mathematics and Computer Science, TU Eindhoven
speckman@win.tue.nl

Abstract. We introduce the concept of subdivision drawings of hyper-
graphs. In a subdivision drawing each vertex corresponds uniquely to a
face of a planar subdivision and, for each hyperedge, the union of the
faces corresponding to the vertices incident to that hyperedge is con-
nected. Vertex-based Venn diagrams and concrete Euler diagrams are
both subdivision drawings. In this paper we study two new types of sub-
division drawings which are more general than concrete Euler diagrams
and more restricted than vertex-based Venn diagrams. They allow us to
draw more hypergraphs than the former while having better aesthetic
properties than the latter.

1 Introduction

A graph G is a pair G = (V,E), where V is a set of elements or vertices and
E ⊆ V ×V is a set of pairs of vertices, called edges. A hypergraph H = (V,E) is
a generalization of a graph, where again V is a set of elements or vertices, but
E is a set of non-empty subsets of V , called hyperedges [1]. The set E ⊆ P(V )
of hyperedges is a subset of the powerset of V .

Hypergraphs are not as common as graphs, but they do arise in many appli-
cation areas. In relational databases there is a natural correspondence between
database schemata and hypergraphs, with attributes corresponding to vertices
and relations to hyperedges [7]. Hypergraphs are used in VLSI design for circuit
visualization [6, 14] and also appear in computational biology [10, 12] and social
networks [3].

Drawings of hypergraphs are less well-understood than drawings of graphs.
There is no single “standard” method of drawing hypergraphs, comparable to
the point-and-arc drawings for graphs. When drawing hypergraphs, vertices are
usually depicted as points or regions in the plane, but hyperedges can have
very varied forms, including Steiner trees, closed curves in the plane, faces of
subdivisions, and points. As a result, there is no unique definition of planarity
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for hypergraphs—different drawing methods imply different, non-equivalent pla-
narity definitions. In the following, we describe some of the drawing methods for
hypergraphs in more detail.
Hypergraph Drawings. The two most common methods to draw hypergraphs
are the subset-based and the edge-based method. A subset-based drawing high-
lights the fact that a hypergraph can be interpreted as a set system: Vertices are
drawn as points in the plane and hyperedges are drawn as simple closed curves
that contain exactly those vertices that they are incident to (see Fig. 1(a)). It is
easy to see that any hypergraph can be drawn this way. Subset-based drawings
neither know any concept of or experience any problems with planarity. Bertault
and Eades [2] show how to create subset-based hypergraph drawings.

An edge-based hypergraph drawing resembles standard drawings of graphs
more closely [11]. Vertices are again drawn as points, but hyperedges are drawn
as Steiner trees (see Fig. 1(b)). Edge-based drawings imply the most common
definition for hypergraph planarity: A hypergraph is planar if and only if it has
an edge-based drawing without hyperedge crossings.

Another way to draw hypergraphs is the so-called Zykov representation. Ver-
tices are again drawn as points, but hyperedges are visualized by faces of a
subdivision. The vertices around a face of the subdivision are the ones con-
nected by the corresponding hyperedge (see Fig. 1(c)). To distinguish faces that
represent hyperedges from faces that do not, a background color is needed to fill
all faces of the subdivision that do not correspond to hyperedges. A hypergraph
is Zykov-planar if it has a Zykov representation. Zykov-planarity is equivalent
to hypergraph planarity as induced by edge-based drawings.

A hypergraph H can also be drawn as a bipartite graph where one set of
vertices corresponds to the vertices of H and the other set corresponds to the
hyperedges (see Fig. 1(d)). The edges of the bipartite graph represent vertex-
hyperedge incidences. Also this representation immediately implies a definition
of planarity, which is equivalent to Zykov-planarity and hence to hypergraph
planarity as induced by edge-based drawings [17].

Many hypergraphs are not (Zykov-)planar and hence have neither an edge-
based drawing, nor a Zykov representation, nor a drawing as a planar bipartite
incidence graph. Motivated by this fact, Pollak and Johnson [9] study alternative
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Fig. 1. Four drawings of the hypergraph H = (V, E) with V = {1, 2, 3, 4, 5, 6} and E =
{(1, 2), (1, 2, 3), (2, 4), (3, 4, 5, 6)}: (a) subset-based drawing; (b) edge-based drawing;
(c) Zykov representation; (c) incidence representation (bipartite graph).
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Fig. 2. A hyperedge-based Venn diagram for (a) K5 and (b) K3,3; (c) two different
drawings of a vertex-based Venn diagram for H.

definitions of hypergraph planarity which are implied by yet two more methods
to draw hypergraphs—hyperedge-based Venn diagrams and vertex-based Venn di-
agrams. (The choice of these names is somewhat unfortunate, since the drawings
have little in common with standard Venn diagrams.)

In a hyperedge-based Venn diagram, hyperedges correspond uniquely to the
faces of a planar subdivision in such a way that for any vertex v, the union of the
faces corresponding to hyperedges that contain v, is connected. In a vertex-based
Venn diagram, vertices correspond uniquely to faces of a planar subdivision in
such a way that for any hyperedge, the union of the faces corresponding to its
incident vertices is connected. Note that the subdivision itself does not show the
hyperedges directly, curves that enclose unions of faces must still be drawn to
visualize them. A hypergraph is hyperedge-planar or vertex-planar if a planar
subdivision with the required properties exists. It is easy to see that both K5

and K3,3 are hyperedge-planar (see Fig. 2(a, b)). Concerning vertex-planarity,
consider the following hypergraph H: H has six vertices and three hyperedges
(1, 2, 3, 4), (1, 2, 3, 5), and (1, 2, 3, 6). H is vertex-planar but not (Zykov-)planar.
Figure 2(c) shows two drawings of H which showcase different methods to draw
the hyperedges in a vertex-based Venn diagram.

Subdivision Drawings. Vertex-based Venn diagrams are a particular type
of hypergraph drawings which we call subdivision drawings. In a subdivision
drawing each vertex corresponds uniquely to a face of a planar subdivision. Fur-
thermore, for any hyperedge, the union of the faces corresponding to the vertices
incident to that hyperedge, the hyperedge region, is connected. Hypergraph draw-
ings which are based on Euler diagrams are subdivision drawings as well. Below
we discuss them in some more detail.

To draw a hypergraph H as an Euler diagram we again need to interpret H
as a set system. Euler diagrams represent a collection of sets by simple, closed
curves in the plane, such that the interior of each curve represents the elements
of the corresponding set. Any face induced by the collection of curves is called
a zone, which lies in the interior of some curves and in the exterior of the rest.
In an Euler diagram, a zone z is only present if an element exists that is in
exactly those sets whose curves have z as their common interior, and z is in the
common exterior of all other curves [13]. No two zones may represent the same
intersections of sets. Often, certain well-formedness conditions are considered
part of the definition of Euler diagrams. These specify that no point may be
the intersection of three of more curves, and all intersections of two curves are



proper intersections (no two curves partially overlap). Flower and Howse call
diagrams satisfying these conditions concrete Euler diagrams [8].

Extended Euler diagrams [16] allow curves to intersect in more general ways:
They may partially coincide, and multiple intersections are allowed. Also, zones
exist for all possible subsets that can be obtained by intersections. For exam-
ple, the set system S : { {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} } generates all four
units, all six pairs, and all four triples of elements as intersections of one or more
sets, so an extended Euler diagram will have 14 zones for these intersections.
Strictly speaking, an extended Euler diagram is not a subdivision drawing, since
there is no unique mapping between the vertices and the faces of the subdivision
anymore. (There is, however, an injective mapping.)

There is no concrete Euler diagram for S, but if we interpret S as a hy-
pergraph, then a vertex-based Venn diagram of S with four faces exists. On
the other hand, hyperedge regions of a concrete Euler diagram are simply con-
nected, whereas hyperedge regions of a vertex-based Venn diagram need only
be connected, that is, they can have holes. In this paper we study two new
types of subdivision drawings for hypergraphs—simple and compact subdivi-
sion drawings—which are more general than concrete Euler diagrams and more
restricted than vertex-based Venn diagrams. They allow us to draw more hy-
pergraphs than the former while having better aesthetic properties than the
latter. An interesting connection to traditional graph drawing is established by
the observation that drawing simple subdivisions corresponds to the problem of
overlapping cluster planarity [4] when single edges are missing.
Results. In Sect. 2 we define simple and compact subdivision drawings. We
also show that there are hypergraphs which have a subdivision drawing, but not
a simple subdivision drawing, and hypergraphs which have a simple, but not
a compact subdivision drawing. Pollack and Johnson [9] proved that it is NP-
complete to decide if a given hypergraph has a subdivision drawing. Nevertheless,
there are classes of graphs that always have a subdivision drawing. In Sect. 3
we prove that hypergraphs which correspond to a particular hierarchy (when
viewed as a set system) have a compact subdivision drawing where each face of
the subdivision is convex. In the full paper we also show that hypergraphs which
are reduced line graphs of complete graphs have a compact subdivision drawing.

2 Subdivision Drawings

Before we can define simple and compact subdivision drawings we first need to
introduce some notation and state some assumptions. Let H = (V,E) be a hy-
pergraph. Two vertices u and v of H are equivalent with respect to E, if every
hyperedge contains either both or none of u and v. To simplify the following dis-
cussion we assume that no two vertices of H are equivalent. (Equivalent vertices
can easily be removed in a pre-processing step and can be added to the final
drawing in an equally easy post-processing step.)

Recall that in a subdivision drawing each vertex corresponds uniquely to
a face of a planar subdivision D. Furthermore, the hyperedge region of each
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Fig. 3. Subdivision drawing of a hypergraph H, only the curves bounding the hy-
peredge (3, 4, 5, 6) are indicated (a); simple subdivision drawing of H (b); compact
subdivision drawing of H (c). Dotted edges indicate a planar support.

hyperedge (the union of the faces corresponding to the vertices incident to that
hyperedge) is connected. We assume that the subdivision D has only vertices of
degree three. Not every bounded face of D has to correspond to a vertex of H.
We call a face that does correspond to a vertex of H a vertex face.

A subdivision drawing is simple if every hyperedge region is simple, that is,
bounded by one simple closed curve. A subdivision drawing is compact if it is
simple and each bounded face of D is a vertex face. That is, the complement of
all vertex faces is connected. Note that collapsing a face that is not a vertex face
will never destroy the connectivity of hyperedge regions, but it may create non-
simple hyperedge regions. Consider the white face in Fig. 3(b): Removing it will
make the region of either hyperedge (1, 2, 3) or hyperedge (3, 4, 5, 6) non-simple.

A concrete Euler diagram is a compact subdivision drawing which has only
proper intersections between the simple closed curves which bound hyperedge
regions: No three curves have a common point and no two curves intersect over
a stretch of positive length. In Flower and Howse’s terminology, not even the set
system { {1, 2}, {2, 3}, {1, 3} } has a concrete Euler diagram.

A graph G is a support for a hypergraph H if the vertices of G correspond
to the vertices of H such that for each hyperedge e the subgraph of G induced
by e is connected. G is a planar support if it is planar. A planar support G is
simple if G has a planar embedding where each cycle in a subgraph induced
by a hyperedge e does not have any other vertex of G on the inside. Hence the
planar support in Fig. 4(a) is a simple planar support if every hyperedge that
induces the cycle c is also incident to vertex v. Intuitively, the planar support is
a subgraph of the dual graph of any subdivision drawing of H (see Fig. 3).

v
c

(a) (b)

Fig. 4. A (simple) planar support (a); turning a support into a subdivision (b).



Observation 1. A hypergraph H

(i) has a simple subdivision drawing if and only if it has a simple planar support.
(ii) has a compact subdivision drawing if and only if it has a simple planar sup-

port with an embedding where all bounded faces are triangulated.

Subdivisions and their dual graphs have been extensively studied in, for example,
graph theory and VLSI design, and there are several methods that can turn a
planar support into a dual subdivision. For completeness, we sketch an easy
approach that creates such a subdivision. Use any straight-line embedding of
the support. (i) Trace a “race track” around every edge and cut it in the middle.
Each vertex face is formed by the union of all half race tracks adjacent to the
corresponding vertex. (ii) Place a vertex inside each triangle and connect it to
the middle of each edge, forming three quadrilaterals. Place a small circle around
every cut vertex, trace a race track around every bridge edge, and cut it in the
middle (see Fig. 4(b)). Each vertex face is now the union of all quadrilaterals,
circles, and half race tracks adjacent to the corresponding vertex in the support.

We now show that there are hypergraphs which have a subdivision drawing,
but not a simple subdivision drawing, and hypergraphs which have a simple
but not a compact subdivision drawing. First, consider the hypergraph H1 on
four vertices. The hyperedges of H1 are the six pairs and the four triples of
vertices. Since the hyperedges include all pairs of vertices all vertex faces of
the subdivision must be adjacent. Hence, modulo re-labeling of vertices and the
removal of white non-vertex faces, we must have a subdivision drawing as the one
depicted in Fig. 5(a) with a non-simple hyperedge region for hyperedge (2, 3, 4).

Second, consider the hypergraph H2 that is schematically depicted in Fig. 5(b).
The hyperedges of H2 are all black edges plus the two hyperedges with nine ver-
tices each, which are indicated by the gray contours. The black edges form a
planar support which is uniquely defined, up to the choice of the outer face.
Each hyperedge region is simply connected, so the black edges even form a sim-
ple planar support. However, we can not triangulate either of the quadrilaterals
without making one hyperedge non-simple. Since at most one of the quadrilat-
erals can be the outer face, H2 does not have a compact subdivision drawing.

(c)(b)(a)

12 3

4

Fig. 5. A hypergraph which has no simple subdivision drawing (a); the hypergraph H2

(b); a simple but not compact subdivision drawing of H2 (c).



3 Hierarchies and Subdivision Drawings

In this section we characterize certain hypergraphs which have a compact sub-
division drawing. In fact, they even have a compact subdivision drawing where
each face of the subdivision is convex. We again view hypergraphs as set sys-
tems and study a particular hierarchy defined on these set systems. Any hyper-
graph H with n vertices and k hyperedges can be interpreted as a set system
S = {S1, . . . , Sk} on a base set M of n elements. (Here we again assume that no
two vertices of H are equivalent.) Subdivision drawings naturally visualize set
containment well: The region of a set (hyperedge) Si is contained in the region
of a set (hyperedge) Sj if and only if Si ⊂ Sj .

A hierarchy H is a directed acyclic graph induced by a set system or hy-
pergraph. A hierarchy has two types of vertices: base vertices, which represent
a singleton set for each element in the base set M , and set vertices, which rep-
resent each set in the set system S. Hence H has n + k vertices. With slight
abuse of notation we refer to the vertices of H by the names of the sets they
represent. H has a directed edge (S1, S2) with S1, S2 ∈ S ∪{{v} : v ∈ M} if and
only if S2 ⊂ S1 and for no set S3 ∈ S, we have S2 ⊂ S3 ⊂ S1. That is, edges
are directed from larger to smaller sets and represent direct containment—our
hierarchies do not contain transitive edges. The base nodes are the leaves of the
hierarchy (with only incoming edges) and the set nodes are the internal nodes
of the hierarchy (each internal node has at least two outgoing edges). A hierar-
chy H corresponds uniquely to a hypergraph H and vice versa. H is a planar
hierarchy if it is planar. We say that a hierarchy is based if it has a set vertex
SM that represents the complete base set M . SM is necessarily the root of the
hierarchy and has only outgoing edges. See Fig. 6 for an example.

In the following we prove that a hypergraph H has a compact drawing where
each face of the subdivision is convex if the corresponding hierarchy H is based
and planar. In particular we describe an algorithm that transforms H into an

1 2 3 4 5 6 7 8 9 10 11

Fig. 6. A based planar hierarchy H defined by M = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and
the sets {1, 2, 3}, {1, 3, 4}, {5, 6}, {1, 2, 3, 4, 8, 9}, {9, 10, 11}, {1, 2, 3, 9, 11}, {1, 2, 3, 4},
{1, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 8, 9, 10, 11}, SM = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.



outerplanar support for H by “sliding” certain edges of H down to the leaf level.
The complete process comprises the following four steps:

1. Fix an embedding and construct a depth-first search spanning tree of H.
2. Slide all non-tree edges of H down to the leaf level.
3. Remove all internal nodes of H to create an outerplanar support for H.
4. Construct a compact subdivision drawing from the outerplanar support.

We now describe each step in more detail.
Step 1: Embedding H and constructing a depth-first search spanning tree.

We embed H such that the root SM lies on the outer face. Recall that all edges
are directed from the root to the leaves. The embedding defines a left to right
order (counterclockwise) of the children of each node. We traverse the hierarchy
in a depth-first search (DFS) manner, creating an ordered DFS spanning tree,
where every edge that reaches some node for the first time defines the true parent
of that node. The true parent structure is a tree which categorizes the edges of H
into tree edges and non-tree edges. W.l.o.g. we relabel the vertices in the base set
with 1, 2, . . . , n in the order in which they are encountered in the DFS traversal.
Step 2: Slide all non-tree edges down to the leaf level.

We now transform the based planar hierarchy H into another based planar
hierarchy H′ where all non-tree edges point to leaves. We do this in such a
way that the outerplanar support for H′ which we create in Step 3 is also an
outerplanar support for H.

Let �a be any non-tree edge that points to an internal node Si. We distinguish
five different cases, depending on the next edge in the clockwise order around Si,
see Fig. 7. If the next edge in clockwise order is (i) an outgoing tree edge, then
we can slide �a to point to the child of that tree edge. If it is (ii) an incoming
non-tree edge �c, then we can proceed with �c instead. If it is (iii) an outgoing
non-tree edge �c, then we can slide �a to point to the destination of �c. Finally, the
next clockwise edge can be an incoming tree edge from the parent. In this case
we consider the counterclockwise neighbor of �a at Si. Due to the construction of
the DFS tree, this can be only an outgoing tree edge (iv) or an incoming non-tree
edge �c (v). We can treat (iv) symmetric to (i) and (v) symmetric to (ii).

(i)
�a �a

(ii) �a

�c

(iii)
�a

�c�c

�a

�a

(iv)

�a

(v)

�a

�c

Fig. 7. Cases of the transformation. Grey nodes are internal, half-grey nodes can be
internal or leaf nodes.



The following lemma shows that this transformation preserves the adjacencies
captured by the original hierarchy.

Lemma 1. For any based planar hierarchy H there exists another based planar
hierarchy H′ where every non-tree edge points to a leaf, and a planar support for
H′ is also a planar support for H.

Proof. We first argue that the transformation described above terminates and
results in a hierarchy H′ where all non-tree edges point to leaves. The five cases
of the transformation can be grouped as follows: In cases (i), (iii), and (iv) the
non-tree edge �a slides to a node Sj with Sj ⊂ Si. In cases (ii) and (v) no sliding
is done, but it is easy to see that these cases cannot occur more often than
there are non-tree edges pointing to Si. Hence the process terminates when all
non-tree edges point to leaves.

Now we prove that a planar support for H′ is also a planar support for
H by considering the corresponding hypergraphs (set systems). Let H be the
hypergraph corresponding to H. We argue that any sliding operation results
in a hypergraph H ′ whose planar support is also a planar support for H. In
particular, let (Si, Sj) be a non-tree edge that is slid and which becomes edge
(S′

i, Sk). The sets of H ′ are precisely the sets of H with the exception of Si

which is replaced by S′
i. We know that Sk ⊂ Sj and S′

i ⊆ Si. Consider a planar
support G′ for H ′. The base elements in Sj , Sk, and S′

i are connected in G′. We
have to show that the base elements of Si are also connected in G′, although Si

is not a set of H ′ and hence not a node of H′. We have Si = S′
i ∪ Sj and also

Sk = S′
i ∩ Sj which implies S′

i ∩ Sj �= ∅. Hence we can conclude that the base
elements of Si are connected in G′. Since this argument holds for every sliding
operation the lemma follows. 	

Step 3: Remove all internal nodes and create an outerplanar support.

After Step 2 we have a hierarchy where every non-tree edge points directly to
a leaf (see Fig. 8). We now embed this hierarchy in the plane such that all leaves
(base elements) lie on a horizontal line �. Non-tree edges are drawn as curves

1 2 3 4 5 6 7 8 9 10 11
�

Fig. 8. Hierarchy after the transformation.



that connect an internal node to a leaf, either without crossing � or by crossing
it exactly once. Such a planar embedding always exists—its can be obtained
directly from the planar embedding used in Step 1 of our algorithm (see Fig. 8).

We say that a base element encounters � if either its leaf is intersected by �
or if � intersects a non-tree edge that is directed to its leaf. Let W = w1, . . . , ws

be the sequence of the base elements as they encounter � from left to right. In
Fig. 8, the sequence is W = 1, 2, 3, 1, 4, 5, 6, 7, 6, 8, 4, 1, 9, 10, 11, 9, 1. The base
elements in any set (internal node) form a subinterval of W . Hence, any planar
graph on the base elements that realizes all adjacencies of W is a planar support.
Therefore we call W the support sequence.

Lemma 2. A support sequence W does not have a subsequence . . a . . b . . a . . b . .,
where a and b represent any two distinct base elements.

(In other words, W is a Davenport-Schinzel sequence of order 2 [15].)

Proof. By construction, the first occurrences of a and b in W correspond to
leaves, the later ones to crossings of non-tree edges with �. A subsequence
. . a . . b . . a . . b . . implies that the non-tree edges to a and b cross below �, but the
initial hierarchy was planar and the transformations preserved planarity. 	

Lemma 3. There is an outerplanar graph G that realizes all adjacencies of W .

Proof. Assume that the base elements are numbered 1, . . . , n. We compute G
from W as follows. Create a node for every base element and connect them
into a path using n − 1 edges (i, i + 1), 1 ≤ i ≤ n − 1. Scan W from left to
right, and for any repeated occurrence of i in . . . j, i, k . . ., create edges (i, j) and
(i, k) such that the path edges (i, i + 1) always keep the unbounded face to the
left. The planarity of this construction follows directly from the planarity of the
transformed hierarchy H′. G is outerplanar since all path edges (i, i + 1) bound
the outer face and hence all nodes are incident to the outer face, see Fig. 9. 	

Step 4: Construct a compact subdivision drawing from the outerplanar support.

The outerplanar graph G that results from Step 3 forms the basis of the
planar support. We add an edge (1, n) if it is not present yet and triangulate all
bounded faces (in Fig. 9, only the faces 1, 4, 8, 9 and 4, 5, 6, 8).

An easy way to construct the regions is the following: Use any straight-line
embedding of the planar support with triangulated bounded faces. For each tri-
angle, choose any point in its interior, for instance the center of mass. For any
edge, place an extra point in the middle. Partition each triangle into three quadri-
laterals by drawing edges between the center and three edge midpoints. The
region of each node is the union of the incident quadrilaterals (see Fig. 10(a)).

1 2 3 4 5 6 7 8 9 10 11

Fig. 9. Planar support for the hierarchy shown in Fig. 8.
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Fig. 10. Triangle-partition based method of constructing a subdivision for the planar
support of Fig. 9, the face of node 1 is indicated (a); Voronoi diagram based method
for the same support, showing 3 sets: {5, 6}, {1, 2, 3, 9, 11}, and {1, 2, 3, 4, 8, 9} (b).

We can ensure that each face of the subdivision is convex, by using a slightly
more involved method based on Voronoi diagrams. Dillencourt [5] showed how
to realize an outerplanar graph as the Delaunay triangulation of points. The
dual of this Delaunay triangulation, clipped to lie within a bounding box, is a
compact subdivision drawing where each face is convex, see Fig. 10(b).

Theorem 1. A hypergraph that corresponds to a based planar hierarchy has a
compact subdivision drawing where each face of the subdivision is convex.

To conclude this section we note that hypergraphs corresponding to a (non-
based) planar hierarchy need not have a compact subdivision drawing, or even a
simple one. Consider again the hypergraph H1 on four vertices. The hyperedges
of H1 are the six pairs and the four triples of vertices. Its hierarchy is planar, as
shown in Fig. 11(a), but—as argued in Sect. 2—H1 has no simple subdivision
drawing. It is easy to see, however, that each hypergraph corresponding to a
planar hierarchy has a subdivision drawing, the planar support can be extracted
from any planar embedding of the hierarchy by iteratively contracting edges
incident to base vertices.
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Fig. 11. Planar drawing of the hierarchy of H1 (a); subdivision drawing of H1 (b).



4 Conclusion and Open Problems

We introduced the concept of subdivision drawings of hypergraphs which com-
prises both vertex-based Venn diagrams and Euler diagrams. We studied two
new types of subdivision drawings, simple and compact subdivision drawings,
and established some of their basic properties. We also characterized certain
hypergraphs that have a compact subdivision drawing.

It is NP-complete to decide if a hypergraph has a subdivision drawing, but it
is not clear if the same result holds for simple and compact subdivision drawings
as well. Of course it would be interesting to identify further classes of hypergraphs
that have simple or compact subdivision drawings.
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